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SUMMARY

In the present paper, a comparative study of numerical solutions for Newtonian �uids based on the
lattice-Boltzmann method (LBM) and the classical �nite volume method (FVM) is presented for the
laminar �ow through a 4:1 planar contraction at a Reynolds number of value one, Re=1. In this
study, the stress �eld for LBM is directly obtained from the distribution function. The calculations of
the stress based on the FVM-data use the evaluations of velocity gradients with �nite di�erences. The
stress �eld for both LBM and FVM is expressed in the present study in terms of the shear stress and
the �rst normal stress di�erence. The lateral and axial pro�les of the velocity, the shear stress and the
�rst normal stress di�erence for both methods are investigated. It is shown that the LBM results for
the velocity and the stresses are in excellent agreement with the FVM results. Copyright ? 2004 John
Wiley & Sons, Ltd.

KEY WORDS: lattice-Boltzmann method; �nite volume method; Newtonian �uid; planar contraction;
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1. INTRODUCTION

It is a well known fact that due to the continuous increase of the performance of com-
puter hardware as well as numerical algorithms, the numerical simulation of �uid �ows has
developed as a standard tool in engineering and scienti�c applications. However, with the in-
creasing possibilities of Computational Fluid Dynamics (CFD), the expectations with respect
to accuracy and e�ciency of these numerical simulations increase too. This has motivated the
development of numerous new computational techniques that allow to circumvent many of the
inherent de�ciencies of the classical CFD methods such as the �nite volume=element meth-
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ods to approximate the Navier–Stokes equations. In that context, the lattice-Boltzmann method
(LBM) has received much attention as a conceptionally new and promising way in simulating
�uid �ows. The basic concept goes back to the cellular automata applied to model simpli-
�ed dynamics of propagation and collisions of �ctitious �uid particles [1]. Several conceptual
draw backs of this approach have led to the development of the lattice-Boltzmann methods, as
presented e.g. in References [2, 3]. The fundamental idea of the LBM is to construct a simpli-
�ed kinetic models that incorporate the essential physics of microscopic processes so that the
averaged properties obey the desired macroscopic equations. The LBM is a relaxation scheme
applied to the velocity discrete Boltzmann equation. In that, it represents an approximation
of the BGK-equation [4], where the collision integral in the original Boltzmann equation is
replaced by a relaxation term without violating the H-theorem. It can be shown that, with
suitable linearizations, this approach leads to an approximation of the Navier–Stokes equa-
tions in the limit of low Mach number [5]. The advantage of the LBM compared to the
‘classical’ �nite approximations used in �uid dynamics (e.g. �nite volume=element methods)
for the discretization of the Navier–Stokes equations is the simplicity of the algorithm and
the computational e�ciency. The LBM has been used mostly in the context of incompressible
viscous Newtonian �uids [6]. Notable success of these ‘minimal’ LBM is, in particular, in the
simulation of turbulent �ows [7], time-dependent �ows, �ows in complex geometries [8–10]
or �ows through porous media [11, 12]. The kinetic nature of the LBM leads to the following
features that distinguish the LBM from any other conventional CFD method [6, 13]. First, the
convection operator of the LBM (or streaming process) is linear in phase space, similar to
that of the Boltzmann kinetic equation but di�erent from the one in the Navier–Stokes equa-
tions. Simple convection combined with a relaxation process (or collision operator) allows the
recovery of the non-linear macroscopic advection through multi-scale expansions. Second, the
pressure is obtained through an equation of state, as opposed to solving a Poisson equation in
the incompressible Navier–Stokes equations. Solving the Poisson equation for the pressure of-
ten produces numerical di�culties requiring special treatment, such as iteration or relaxation.
The incompressible Navier–Stokes equations can be obtained in the nearly incompressible
limit of the LBM. Third, the LBM utilizes a minimal set of velocities in phase space. In
the traditional kinetic theory with the Maxwell–Boltzmann equilibrium distribution, the phase
space is a complete functional space. The averaging process involves information from the
phase space. Because only one or two speeds and a few moving directions are used in LBM,
the transformation relating the microscopic distribution function and macroscopic quantities is
greatly simpli�ed and consists of simple arithmetic calculations. Fourth, unlike the Navier–
Stokes equations, in which macroscopic conservation laws are discretized, the LBM utilize
a set of discrete particle velocities such that the conserved quantities are preserved up to
machine accuracy in the calculations.
The objective of the present paper is to show that the LBM is able to produce results

for the velocity, the shear stress and the �rst normal stress di�erence in the vicinity of the
contraction in agreement with FVM simulations, which uses fully developed one-dimensional
�ow regions far up- and far downstream. For LBM approach, the stress �eld is directly
obtained from the distribution function, while calculations of the stress based on the FVM-
data use the evaluations of velocity gradients with �nite di�erences. The shear stress and the
�rst normal stress di�erence contain all the e�ects of deformation on a material. Thus, the
stress �eld for both LBM and FVM is expressed in the present study in terms of the shear
stress and the �rst normal stress di�erence.
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This paper is organized as follows: Section 2 provides a brief introduction of the governing
equations. Sections 3 and 4 introduce both LBM and FVM methods, respectively. Section 5
describes the �ow system of a 2D symmetric channel with sudden contraction used in this
study, and provides the details of the boundary conditions. Section 6 presents the numerical
results and discussion of the LBM simulations, and the comparison with FVM results and
analytical solutions when available. Section 7 concludes the paper and hints at work for future
studies.

2. GOVERNING EQUATIONS

The motion of an isothermal �uids may be governed by conservation laws for mass and
momentum. The continuity equation for incompressible �uids can be written as

∇ · v=0 (1)

where v is the velocity. Incorporating conservative body forces into the hydrodynamic pressure,
the conservation of momentum for steady state �ows reads

∇ · (�vv)=−∇p+∇ · � (2)

where � is the density, p is the hydrodynamic pressure and � is the extra stress tensor. For
an incompressible Newtonian �uid, the extra stress tensor � is given by

�=2�D (3)

where � is the �uid viscosity and D is the rate of strain tensor,

D= 1
2(∇v+ (∇v)T) (4)

3. LATTICE-BOLTZMANN METHOD

The LBM§ starts from a discrete distribution function fn(t;x)≡f(t;x; cn), where cn is the
discrete particle velocity. The function fn leads to the mass density � and to the mass average
velocity v via the identities [3]

�(t;x) =
∑
n
fn(t;x) (5)

�v(t;x) =
∑
n
cnfn(t;x) (6)

The function fn satis�es the hyperbolic equation

fn(t + 1;x+ cn)− fn(t;x)= − 1
#
(fn(t;x)− feqn (t;x)) (7)

§In LBM units all quantities are dimensionless.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:903–920
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Figure 1. Nine-speed square lattice used in the LBM simulation carried out in this study.

where # is a dimensionless collision frequency. Here, feqn is the equilibrium distribution
function given by [3]

feqn =wn�(1 + 3(cn · v) + 9
2(cn · v)2 − 3

2v
2) (8)

For two-dimensional problems with a square lattice (�x=�y=1), it is customary to use
nine discrete velocities (the D2Q9 scheme) shown in Figure 1

c0 = 0

cn =
(
cos

(
(n− 1)�

4

)
; sin

(
(n− 1)�

4

))
for n=1; 3; 5; 7

cn =
√
2

(
cos

(
(n− 1)�

4

)
; sin

(
(n− 1)�

4

))
for n=2; 4; 6; 8

(9)

The weighting coe�cients wn needed to satisfy Equations (5) and (6) for f
eq
n turn out to be

[3, 6]

w0 = 4
9

wn = 1
9 for n=1; 3; 5; 7

wn = 1
36 for n=2; 4; 6; 8

(10)

Note that Equation (10) requires that the equilibrium distribution function can be used in
Equations (5) and (6).
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It has been shown [14] that this approach leads to Equations (1) and (2) with � given by

�=−
(
1− 1

2#

)∑
n
cncn(fn − feqn ) (11)

If one utilizes a Chapman–Enskog expansion in Equation (7) (note that for in�nite collision
frequency, fn=f

eq
n is bound to prevail), then Equation (11) can be cast into the form [6]

�= �(∇(�v) + (∇(�v))T) (12)

with the dimensionless kinematic viscosity and speed of sound cs given by

�= 1
3(#− 1

2 ) (13)

cs = 1√
3

(14)

The LBM has good stability properties for 0¡#−1¡2 (sub-relaxation for 0¡#−1¡1 and
over-relaxation for 1¡#−1¡2). Thus, positive shear viscosity and stable solutions of
Equation (7) go hand in hand.

3.1. Computational lattice and method of solution

Simplicity in implementation for the hyperbolic Equation (7) has been used as an argument
in favour of the LBM. The simplest ‘stream-and-collide’ D2Q9 algorithm with single time
relaxation and a bounce-back boundary condition formulation is considered in this study. This
algorithm is easier to program and to handle than the continuum CFD algorithms for solving
the momentum equations. On every lattice node x, a set of n real numbers, the particle
density distributions fn, is stored. The updating of the lattice consists of basically two steps:
a streaming process, where the particle densities are shifted in discrete time steps �t=1
through the lattice along the connection lines in direction to their next neighboring nodes,
and a relaxation step, where locally that part of a new particle distribution is computed
which results from the equivalent to the Boltzmann collision integrals, right-hand side of
Equation (7). For every time step, all quantities (velocity, density, pressure) can locally be
computed in terms of averages of this density distribution and (for the viscosity) the relaxation
parameter.

3.2. Boundary conditions

Wall boundary condition. At walls, a bounce-back scheme is used to obtain no-slip velocity
conditions [15, 16]. By the so-called bounce-back scheme, particle distributions streaming to
a wall node scatter back in the original direction. This guarantees that the no-slip condition
is satis�ed.
In�ow boundary condition. The velocity pro�le u(y) as well as the density � of the �uid

�ow through a planar contraction investigated in this study are assigned at the inlet. A speci�ed
inlet velocity pro�le is easily implemented by constantly settling the inlet �elds with the
equilibrium population obtained from Equation (8). The inlet region was chosen to be long
enough to ensure that a slight error which occurs when only the equilibrium distribution is
taken into account has no in�uence on the results presented hereafter.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:903–920
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Out�ow boundary condition. A zero gradient condition is set by simply copying the �elds
of the next to the last column into the last one, i.e. the outlet. This condition works well
essentially if the outlet is located su�ciently far from the inlet. Otherwise, some numerical
instabilities may appear.
Connection to real �uids. Since LBM uses only dimensionless quantities, dimensional rea-

soning is applied to obtain the connection to physical values. For Newtonian �uid, this is
very simple and straight forward. Guaranteeing Reynolds number and geometry identities of
LBM calculations and real physical systems imply identical dimensionless results. For the
�ow through a 4:1 planar contraction, the relation

v
uo
=F

(
x
h
;
h
H
; Re

)
(15)

will be hold. Here, uo is the average outlet velocity and F is an arbitrary function. The
dimensionless quantities of the relation are the ones calculated by LBM.

4. FINITE-VOLUME METHOD

To solve the non-linear coupled system of the conservation equations, Equations (1)–(3), we
summarize the key features of the FVM used in this study. The �ow domain is subdivided for
a spatial discretization into a �nite number of control volumes (CV), where the computational
nodes are located at the centre of every CV. All variables are stored at the same grid node,
i.e. a collocated arrangement is used. Due to the symmetry of the problem, only the upper half
of the planar contraction geometry is resolved by an orthogonal, uniform grid. The governing
equations can be written in terms of a general transport equation of the primitive variable �:

∇ · (�v�− ��∇�)= S� (16)

where �� is the di�usion coe�cient and S� is the source term. By integrating over each CV
and applying of the Gauss theorem leads to∫

A
n · (�v�− ��∇�) dA=

∫
�V
S� dV (17)

where A is the surface area, n the normal unit vector of one CV face pointing outwards and
�V is the volume of the CV. We assume that the values of the variables at the centre of the
CV faces and at the centre of the CV are proper averages and thus prevail over the entire
surface and the entire CV. Equation (17) can be written as∑

c
nc · (�v�− ��∇�)cAc= S��V (18)

where the index c denotes the CV faces of one CV over which the summation is to be taken.
At this point approximations have to be introduced since the values �c on the CV faces have
to be determined by an appropriate interpolation scheme. The interpolation scheme relates the
nodal value �P to its neighbouring CV values �nb. Substituting the discretized �uxes into
Equation (18) yields an algebraic equation for every CV of the form

aP �P +
∑
nb
anb �nb = S

�
P (19)
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For the entire solution domain thus results a matrix equation:

A ·�=S (20)

where A is the penta-diagonal matrix of coe�cients, � is the solution vector of the unknown
variables u, v and p and S is the source term vector. This equation is solved using the strongly
implicit procedure (SIP), which is designed for algebraic equations that are discretization
of partial di�erential equations. The method is based on the incomplete lower-upper (ILU)
decomposition of the coe�cient matrix A taking advantage of the sparseness of the matrix.
In order to solve the coupled set of equations for u, v and p a pressure correction method
is applied, namely the SIMPLE algorithm of Patankar and Spalding [17]. This process is
repeated until the convergence criterion is reached, i.e. the sum of absolute residuals in all
equations is reduced to some speci�ed value, in our case 10−5. Further technical details of
this method may be found in Reference [18].

5. STATEMENT OF THE PROBLEM

The benchmark problem of �ow through an abrupt 4:1 planar contraction with a reentrant cor-
ner for Newtonian as well as non-Newtonian �uids is known to be a good test case. Figure 2
shows a sketch of the �ow geometry used in this study. A planar contraction geometry was
used with an upstream height of 2H =0:0256m and a downstream height of 2h=0:0064m. A
Cartesian co-ordinate system is used with its origin in the contraction plane. A detailed study
of the stress and velocity �elds will be presented for the laminar �ow at a Reynolds number
of one, Re=�uoh=�=1, where � is the �uid density, uo is the average outlet velocity and �
is the viscosity. The lengths of the inlet and outlet channels were taken to be long enough,
30h in the upstream channel and 15h in the downstream section, to reach a fully developed
�ow far away from the contraction plane. Referring to Figure 2, the boundary conditions are
no-slip condition on the walls. At the inlet a fully developed velocity pro�le is prescribed. At
the outlet, which is located far downstream with respect to the region of interest of the �ow,
a Neumann boundary condition is applied. At the plane of symmetry the normal component
of the velocity and the normal gradients of the tangential velocity are zero.

(0.0)
2h

Inlet

at wall, u=v=0

Outletx

y

2H

u(y)

v=0

Figure 2. Sketch of the �ow geometry with boundary conditions.
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In order for a comparison with FVM simulation, it is necessary only to match the Reynolds
number and geometry in the LBM simulation for �uid �ow. The physical velocity and stress
�elds can be expressed in terms of dimensionless velocity and stress in the LBM calculations.
To check the e�ect of grid re�nement on the numerical results, two uniform grids (or lattice
for LBM) were used for both numerical methods, LBM and FVM. The coarse grid=lattice
consists of 1125 · 200 CVs (or nodes for LBM) in the x and y directions, respectively. The
�ne grid=lattice consists of 2250 · 400 CVs=nodes. The solutions obtained on both grids agree
very well; thus the solutions may be regarded as grid converged and only the results of the �ne
grid=lattice are presented. In this study, the stress �eld for both LBM and FVM is expressed
in terms of the shear stress �xy and the �rst normal stress di�erence N1, N1= �xx − �yy.
The calculations of the shear stress �xy and the �rst normal stress di�erence N1 based on the
FVM-data use the evaluations of velocity gradients with �nite di�erences, recall Equation (3).
In the LBM approach, the stress components may be directly obtained from the distribution
function according to Equation (11).

6. RESULTS AND DISCUSSION

The numerical results for the Newtonian �uid �ow at Reynolds number Re=1 will be pre-
sented in form of velocity and stress pro�les upstream and downstream of the contraction as
well as along the centreline. Pro�les of the shear stress �xy and the �rst normal stress di�er-
ence N1 are calculated from the completely converged �ow kinematics. The numerical results
for both �xy and N1 have been non-dimensionalized with respect to �o, which is given by

�o = �
(uo
h

)
(21)

6.1. Evaluation of the velocity distribution

6.1.1. Velocity pro�les upstream of the contraction plane. Figure 3 displays the streamlines
along the contraction for the LBM simulation, where a recirculation can be observed. Figure 4
shows the lateral pro�les of the axial velocity u along x for the LBM simulation results. For
more details, Figure 5 shows the upstream lateral pro�les of the axial velocity u in front
of the contraction for the LBM simulation as compared to FVM results. As expected from
the theoretical analysis for Newtonian �uid �ow between two parallel plates, the velocity
pro�le far upstream of the contraction is parabolic, i.e. one-dimensional fully developed �ow
as assumed at the inlet. The velocity pro�les in this region are in excellent agreement with
the analytical solution for both methods, which is given by

u
uavg

=
4u
uo
= 1:5

(
1−

( y
4h

)2)
(22)

where u=uavg = 1:5 at the centreline y=h=0. The area under each curve is the volumetric �ow
rate, which is constant as a result of the conservation law of mass. LBM predicts slightly
larger velocity values compared to FVM in the core region of the �ow when approaching the
contraction. For y=h¿1, LBM predicts slightly lower velocity values compared to FVM so
that the volumetric �ow rate for each method is the same. Figure 6 shows the axial scans of
the velocity pro�les, where both numerical results are in excellent agreement with each other.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:903–920
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Figure 3. Streamlines along the contraction at Re=1 for LBM simulation.
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Figure 4. Lateral pro�les of the velocity along the contraction for the LBM simulation.

6.1.2. Velocity pro�les downstream of the contraction plane. Figure 7 presents the axial ve-
locity pro�les in the downstream section of the �ow at x=h=0; 1; 5. The pro�les for both LBM
and FVM methods show good agreement with each other. At x=h¿1 after the contraction,
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Figure 5. Lateral pro�les of the velocity in upstream of the contraction
for both LBM and FVM simulations.
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Figure 6. Axial scans of the velocity pro�les in the upstream section of the channel
for both LBM and FVM simulations.
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Figure 7. Lateral pro�les of the velocity in the downstream section of the contraction
for both LBM and FVM simulations.

the pro�le becomes parabolic and one-dimensional fully developed. The velocity pro�les in
this region are in excellent agreement for both methods with the analytical solution, which is
given by

u
4uavg

=
u
uo
= 1:5

(
1−

(y
h

)2)
(23)

where u=uavg = 6 at the centreline of the 4:1 contraction.

6.1.3. Velocity pro�les along the centreline and for y=h=0:5. Figure 8 shows the centreline
velocity and the velocity at y=h=0:5 along the contraction for both LBM and FVM. Both
numerical methods are in good agreement with each other. For the velocity at y=h=0:5, a
small velocity overshoot after the contraction can be observed for the simulations of both
models.

6.2. Evaluation of the shear stress and the �rst normal stress di�erence

6.2.1. Shear stress and �rst normal stress di�erence pro�les upstream of the contraction
plane. Figure 9 shows the cross-sectional shear stress pro�les upstream of the contraction. At
x=h=−10 upstream of the contraction, where the �ow is one-dimensional fully developed,
the shear stress is a straight line with a slope=−3=64 for both LBM and FVM simulations.
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Figure 8. Velocity at di�erent values of y=h along the contraction for both LBM and FVM.
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Figure 9. Lateral scans of the shear stress pro�les in the upstream section of
the channel for both LBM and FVM.
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Figure 10. Axial scans of the shear stress pro�les in the upstream section of
the channel for both LBM and FVM.

The analytical solution for the shear stress in this region, one-dimensional fully developed, is
a linear function of y, i.e.

�xy= �
(
du
dy

)
=−

(
3
64
�uo
h

) (y
h

)
(24)

Figure 9 shows that simulated minima appear already at y=h¡1 for higher x=h values. The
value of the maxima increases when approaching the contraction. Figure 10 shows the axial
pro�les of the shear stress in the upstream region. For y=h=1 and x=y� 0, the numerical
results increase strongly as a result of the singularity at the corner. Figure 11 shows the
lateral pro�les of the �rst normal stress di�erence. It is clear that for a fully developed �ow,
N1=0, in agreement with the analytical solution,

N1= �xx − �yy

=2�
(
@u
@x

− @v
@y

)

=4�
(
@u
@x

)

=0 (25)

For the two-dimensional �ow, near the contraction, the peak values of the �rst normal stress
di�erence is along the centreline. The value of the peak increases when approaching the
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Figure 11. Lateral scans of the �rst normal stress di�erence pro�les in the upstream section of
the channel for both LBM and FVM.

contraction. The axial scans of the �rst normal stress di�erence pro�les in the upstream section
of the channel are shown in Figure 12. It is seen that both LBM and FVM simulations are
in good agreement with each other, except close to the corner.

6.2.2. Shear stress and �rst normal stress di�erence pro�les downstream of the contraction
plane. The cross-sectional shear stress pro�les after the contraction are shown in Figure 13.
The analytical solution for the shear stress far downstream of the contraction in the one-
dimensional fully developed �ow region with respect to y=h is a straight line with a slope=−3,
i.e.

�xy= �
(
du
dy

)
=−

(
3
�uo
h

) (y
h

)
(26)

Figure 14 illustrates the behaviour of the lateral scans of the �rst normal stress di�erence
in several x=h co-ordinates after the contraction. It is clear again that in the one-dimensional
fully developed �ow regions, far up- and far downstream of the contraction, N1=0, which is
in agreement with the analytical solution, see Figure 16. Figures 13 and 14 show di�erences
between LBM and FVM simulations close to the corner, as well as close to the wall. However,
the �ow at the sharp corner is singular [19, 20]. The singularity present at the sharp corner is
responsible for many di�culties associated with the numerical simulations of �uid �ows [21].

6.2.3. Shear stress and �rst normal stress di�erence pro�les along the centreline and for
y=h=0:5. Figure 15 shows axial shear stress pro�les at y=h=0 and y=h=0:5. The shear stress

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:903–920



COMPARATIVE STUDY OF LATTICE-BOLTZMANN AND FINITE VOLUME METHODS 917

-10 -8 -6 -4 -2 0

x/h

-2

-1.5

-1

-0.5

0

0.5

N
1/

τ o

LBM, y/h=1.0
LBM, y/h=1.5
LBM, y/h=2.0
LBM, y/h=2.5
LBM, y/h=3.0
LBM, y/h=3.5
FVM, y/h=1.0
FVM, y/h=1.5
FVM, y/h=2.0
FVM, y/h=2.5
FVM, y/h=3.0
FVM, y/h=3.5

Figure 12. Axial scans of the �rst normal stress di�erence pro�les in the upstream section
of the channel for both LBM and FVM.
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Figure 13. Lateral scans of the shear stress pro�les in the downstream section of the
contraction for both LBM and FVM.
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Figure 14. Lateral scans of the �rst normal stress di�erence pro�les in the downstream section of the
contraction for both LBM and FVM.
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Figure 15. Shear stress pro�les at di�erent values of y=h for both LBM and FVM.
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Figure 16. First normal stress di�erence pro�les at di�erent values of y=h for both LBM and FVM.

pro�les along the centreline are zero as a result of the symmetry at y=h=0. An overshoot in
the shear stress upstream of the contraction can be also observed. Figure 16 shows a maximum
value of the �rst normal stress di�erence slightly before approaching the contraction. This
maximum value becomes lower by approaching the centreline, which is also the symmetry
line. The velocity overshoot seen in Figure 8 leads to the negative N1 values shortly after
the contraction,

N1= �xx − �yy=4�
(
@u
@x

)
(27)

The comparison of the analytical results and the data obtained with LBM and FVM clearly
verify the numerical methods. Though the resolution of the computational grids was quite
coarse in the vicinity of the corner, reasonable agreement was obtained. However, to obtain
hopefully better agreement local re�nement of the computational meshes close to the singular
corner are required. This will be the subject of the next chapter.

7. SUMMARY AND CONCLUSIONS

In this study, we conducted for the velocity �eld a comparison of both LBM and FVM for
the numerical simulation of Newtonian �uid through a planar 4:1 contraction. The lateral and
axial pro�les of the velocity were compared. Using both LBM and FVM, the shear stress
and the �rst normal stress di�erence were studied in detail for the Reynolds number one. The
velocity pro�les of both LBM and FVM are in excellent agreement with each other and with
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the analytical solution in the one-dimensional fully developed �ow regions. The shear stress
and the �rst normal stress di�erence are also investigated. The numerical simulations for both
LBM and FVM are in agreement with each other away from the corner. Numerical simulations
for both LBM and FVM are in agreement with the analytical solution when available. The
lattice-Boltzmann method (LBM) is an alternative and promising way in simulating Newtonian
�uid �ows through contraction or even more complex geometries. The advantage of the LBM
compared to the ‘classical’ �nite volume method for the discretization of the Navier–Stokes
equations is the simplicity of the algorithm and the computational e�ciency.
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